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1. INTRODUCTION 

The versatile Markovian point process was introduced by M. F. Neuts in [1]. This is a very rich class 

of point processes which contains many well known arrival processes as special cases. Among them are 

the phase-type (PH) renewal process, the Markov modulated Poisson process (MMPP), overflows from 

finite Markovian queues, etc. In each case, arrivals are allowed to occur in batches where different types 

of arrivals can have different batch size distributions. The price paid for such generality was an elaborate 

notation required to keep track of the different types of arrivals. Although the notation was complex, the 

analysis of queues with this point process as the arrival stream proceeded, conceptually, in an analogous 

fashion to that of queues with simpler arrival streams. Thus it was possible to solve in a unified 

methodical analysis a whole class of queueing problems, unifying many results in the literature. 

This was first accomplished by V. Ramaswami for the single server queue with the versatile 

Markovian point process as the arrival stream [2]. Since then, the infinite server, c-server (with 

deterministic service times), and finite queue versions have been solved, see [3], [4], and [5]. Although 

the computational algorithm suggested by Rarnaswami' s analysis has been shown to be numerically 

stable [6], in practice it has not been feasible to implement it in its full generality. The setup computations 

alone are a formidable burden on both CPU time and storage. Thus, until now, practical numerical 

solutions have been limited to particular cases of the general model. 

In our analysis of a single server queue with server vacations [7], we desired the solution to the queue 

with a PH-renewal arrival process and the one with a correlated arrival stream such as an MMPP. As our 

focus was not on batch arrivals, we did not proceed with the full generality of the versatile Markovian 

point process, but constructed a new process which contained both PH-renewal and the MMPP processes 

yet whose notation was very simple. We called this process the Markovian Arrival Process (MAP). This 

construction is easily generalized to the Batch Markovian Arrival Process (BMAP) to allow for batch 

arrivals. Although this new class of processes was originally thought to be more general than the versatile 

Markovian point process, we later showed that the two processes were in fact equivalent. The only 

difference is that the BMAP involves much simpler notation. 

Special cases of the BMAPIG/I queue have received renewed attention in the communications 

modeling literature. The interrupted Poisson process has long been used to approximate the overflow 

traffic of finite trunk systems [8]. More recently, modeling of packetized voice and data traffic has 

required consideration of more complicated arrival processes than the Poisson process. It is now well 

known ([9], [10]) that the interarrival times in the packet streams are strongly correlated. The MMPP was 

used in [10] to approximate the superposition of packetized voice processes and in [11] for a related 

process. The MMPP was chosen because it is a tractable, non-renewal stream which could match certain 

statistical properties of the original traffic. The MMPPIG/l queue approximated the first two moments of 

delays as well as the tail probabilities with high accuracy. Other algorithms for solving the MMPPIG/l 

queue are presented in [12] and [13]. For a case where the MMPP is obtained as the superposition of 
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interrupted Poisson processes see [14]. Other special cases of the BMAPIG/I queue which have appeared 

in the literature are related to the PHIG/I queue. We refer to the extended, annotated bibliography [15] 

for many examples and special cases. 

We present here new resnlts for the BMAPIG/I queue. In particular, we show that the matrix G, 

which arises in the matrix analytic approach to queues of MIG/I type and is the key ingredient to the 

computational procedures, has an exponential form. This exponential fonn leads to an efficient algorithm 

for the computation of G as well as the coefficient matrices in the transition probability matrix of the 

Markov chain embedded at departures. These are needed to compute the queue length distribution at 

departures and at arbitrary times. This key result generalizes similar results in [7] ,and [16]. The 

algorithms presented here allow for a general implementation of canned computer programs for solving 

the general model. Such a program could be used for comparing vastly different arrival processes 

entering a single server queue. 

A further use of this algorithm is to evaluate the performance of superpositions of renewal processes 

entering a queue. If the renewal processes are of phase type then the superposition is a special case of the 

BMAP. Although the size of the matrices involved grows geometrically as the number of streams, for two 

or three streams the computations are completely feasible. The delay seen by customers in the individual 

streams can be derived from the results presented earlier. Similar calculations for the MMPPIMIc/c +K 

queue were presented in [17]. These exact expressions could be used to validate various simple 

approximations that have been proposed, see e.g., [18] and [19]. 

The remainder of this paper is organized as follows. In Section 2, we define the BMAP and present 

some familiar special cases of the process. Section 3 consists of an outline of the traditional matrix

analytic approach to solving the single server queue with a BMAP as the arrival stream emphasizing the 

framework of the new notation. New results for the BMAPIG/I queue are presented in Section 4. Section 

5 summarizes the algorithmic simplifications for the general model, highlighting the substantial savings in 

both computational complexity and storage which are afforded by the new results. In Section 6 present 

several special cases which have particularly simple solutions. Conclusions are presented in Section 7. 

2. THE BATCH MARKOVIAN ARRIVAL PROCESS 

To motivate the Batch Markovian Arrival Process, BMAP, we first consider a Poisson process with 

batch arrivals. Let the rate of the Poisson process be I.. and the probability that the batch size equals j be 

Pj, j?l. N(t) is the number of arrivals in (O,t]. The process {N(t)} is then a Markov process on the 

state space {i: i? O} with infinitesimal generator of the form 
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do d] d 2 d 3 

do d] d 2 

Q = do d] (1) 

where, do =- A. and dj = A.Pj for j? I. After an exponential sojourn (with mean A. -]) in state i, the 

process jumps to state i + j with probability Pj where the transition corresponds to an arrival and j 

corresponds to the size of the batch. 

The Batch Markovian Arrival Process is constructed by generalizing the above batch Poisson process 

to allow for non-exponential times between the arrivals of batches, but still preserving an underlying 

Markovian structure. To accomplish this, we consider a 2-dimensional Markov process (N(t), J(t)} on 

the state space {(i,j): i ?O, 1 $j$m} with an infinitesimal generator Q having the structure, 

Q= 

Do D] D2 D3 

Do D] D2 

Do D] (2) 

where Db k ?O, are mxm matrices, Do has negative diagonal elements and nonnegative off-diagonal 

elements, Dk , k ?1, are nonnegative and D, defined by 

(3) 

is an irreducible infinitesimal generator. We also assume that D .. D o. If N(t) represents a counting 

variable and J(t) an auxiliary state or phase variable then the above Markov process defines a batch 

arrival process where transitions from a state (i ,j) to state (i + k,l), k? I, 1 $j ,I $ m, correspond to batch 

arrivals of size k, and thus batch size can depend on i and j. The matrix Do is a stable matrix which 

implies that it is nonsingular and the sojourn time in the set of states {(i,j): 1 $j$m} is finite with 

probability 1. This implies that the arrival process does not terminate. For future reference, we define the 

matrix generating function 
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D(z) = I,DkZk, for Izl::;l. 
k=O 

Let It be the stationary probability vector of the Markov process with generator D, i.e., It satisfies 

ltD = 0, lte = I, (4) 

where e is a column vector of l's. The fundamental arrival rate for the arrival process is then given by 

A;-I = It I,kDke = ltd, 
k=1 

A constructive description of this process is useful for visualizing the evolution of the process. 

Assume the underlying Markov process with generator D is in some state i, I ::; i ::; m. The sojourn time in 

that state is exponentially distributed with parameter Ai. At the end of that sojourn time, there occurs a 

transition to another (or possibly the same) state and that transition mayor may not correspond to an 

arrival epoch. With probability pi(O,k), I::;k ::;m, h=i, there will be a transition to state k without an 

arrival. With probability pi(j,k), j"2I, I::;k ::;m, there will be a transition to state k with a batch arrival 

of sizej. We therefore have, for I::;i ::;m, 

m 
I,pi(O,k) 
k=1 
koti 

m 

+ I, I,pi(j,k) = I, 
j=1 k=1 

and with this notation it is clear that (DO)U=-Ai' I::;i::;m, (DO)ik=AiPi(O,k), I::;i,k::;m, k~i, and 

(Dj)ik=AiPi(j,k), j"2I, I ::;i,k::;m. The matrix Do thus governs transitions that correspond to no 

arrivals, and D j governs transitions that correspond to arrivals of batches of size j. 

If P( t) represents the transition probability matrix of the Markov process (N (t) ,J (t) }, with generator 

Q, then it satisfies the Chapman-Kolmogorov equations 

p' (t) = p(t) Q, for t "2 0, with P(O) = I. (5) 
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2.1 The Counting Function: 

Let N(t) be the number of arrivals in (O,t) and J(t) the auxiliary phase at time t. Now let 

Pij(n,t) = P{N(t) = n, J(t) = jl N(O) = 0, J(O)=ij 

be the (i,j) element of a matrix P(n,t). If P(t) is partitioned into mxm blocks then P(n,t) is given by 

the n-th block in the first row of P(t). Therefore, we see that the Chapman-Kolmogorov equations (5) 

with the structure of Q in (2) imply that the matrices P(n,t) satisfy 

n 
p' (n,t) = I,P(j,t)D n_j , n ~O, t ~O, 

j=O 

P(O,O) = I. 

(6) 

These equations can be derived directly by considering the possible scenarios that result in n arrivals by 

time t + dt. That is, there could be j arrivals up to t, 0 5. j 5. n, and a batch arrival of size n - j in (t, t + dr). 

Multiplying the n-th equation in (6) by zn, n ~ 0, and summing yield that the matrix generating function 

P*(z,t), defined by 

= 
p*(z,t) = I, P(n,t)zn, for Izl5.l, 

11=0 

satisfies 

d 
dt P*(z,t) = p*(z,t)D(z), (7) 

P*(z,O) = I, 

and is therefore explicitly given by 

P*(z,t) = eD(z)t, for Izl5.I, t~O. (8) 

By differentiating successively in Equation (8) we may obtain expressions for the moments of the number 

of arrivals in (O,t). (See [20) for similar calculations.) 
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2.2 Special Cases: 

Many familiar arrival processes can be obtained as very special cases of the BMAP. Here is a selected 

sample of some of the more useful examples. 

a) The Markovian Arrival Process (MAP). The MAP defined in [7] is a BMAP with all arrivals 

consisting of a batch of size 1. We therefore have D j = 0, F? 2. This class contains many well 

known arrival processes, some of which are: 

• Poisson process. For Do = - A., D I = A., the MAP is the ordinary Poisson process of rate A.. 

• PH-renewal process. The phase type (PH) renewal process, [21], [22], with representation 

(a,T), is a MAP with Do = T and DI =-Tea. This class contains the familiar Erlang, Eb 

and hyperexponential, H b arrival processes as well as finite mixtures of these. See [23] for 

other examples. 

• Markov-modulated Poisson process (MMPP) (see, e.g., [10].) The MMPP with infinitesimal 

generator R and arrival rate matrix A = diag (1.. 1 , .•. , A. m), is a MAP with Do = R - A, and 

D I = A. The MMPP is a particularly useful class of non-renewal processes. 

• Alternating PH-renewal process. 

• A sequence of PH interarrival times selected via a Markov chain [24]. 

• A superposition of PH-renewal processes [25]. 

• The superposition of independent MAP's. 

We refer to [7] for additional examples and for the representations of the above examples. 

b) A MAP with i.i.d. batch arrivals. Consider a MAP defined by the pair (D 0 ,D I ) where each arrival 

epoch corresponds to a batch arrival. If successive batch sizes are independent and identically 

distributed with probability density {Pj' j"?l} then this process is a BMAP with Dj =PjD I, j"?1. 

c) A batch Poisson process with correlated batch arrivals. Consider a batch Poisson process where 

the batch size distribution of successive batch arrivals is chosen according to a Markov chain. For 

example, let (qi(k), k"?l} l~i~m" be a set of m discrete density functions and let P be the 

transition probability matrix of an m-state, irreducible Markov chain. Let the rate of the Poisson 

process be A. and assume that successive batch size distributions are chosen from the set 

{qi(·), l~i~m} according to P. This process is then a BMAP with Do = -A./ and 

(Dklij = A.P ijq i (k). This example is easily extended to a MAP with correlated batch sizes. 
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d) Neuts' versatile Markovian point process. That process. introduced in [I]. is constructively defined 

by starting with a PH-renewal process as a substratum. There are three types of arrival epochs 

which are related to the evolution of the PH-renewal process as follows. There are Poisson arrivals 

with arbitrary batch size distributions during sojourns in the states of the Markov process governing 

the renewal process. The arrival rates of the Poisson process and the batch size distributions may 

depend on the state of the Markov process. The underlying Markov process can change states 

either with or without a corresponding renewal. Each time the process changes states there is a 

batch arrival (the batch size may be 0) where the batch size distribution can depend on the states 

before and after the change as well as whether or not a renewal occurred. 

It can be shown that this process is equivalent to the BMAP. An advantage of viewing the 

process in the framework of the BMAP is that the notation is much simplified. For example. using 

the notation of [I]. we have the following correspondence: 

Do = ~(l)Ll[p(O)] - ~(l) + Toq(O) + TOaor(O), (9) 

Dk = ~(l)Ll[p(k)] + Toq(k) + TOaor(k), for k~1. 

Queueing systems with the versatile Markovian point process as the arrival stream are studied in 

[2], [3], [4], and [5]. 

3. THE MATRIX ANALYTIC APPROACH 

In this section we outline the solution procedure based on the matrix-analytic approach to the 

BMAP IG/I queue. This approach was pioneered by M. F. Neuts and has been used successfully to 

analyze a number of complicated queueing systems. (See e.g., [2], [10], [20], [26]). The main results for 

this section were originally proved by V. Ramaswarni for the equivalent NIG/I queue. We will therefore 

not prove the results again here, but will simply restate them in the BMAP notation. The purpose of 

including this outline is first, to show how the analysis itself serves as a recipe for the algorithmic 

computations of many desired performance measures; second, to have expressions for many of the 

intermediate quantities and performance measures in terms of the new BMAP notation and third, to have a 

benchmark to compare the new algorithms which are presented in Section 5. 

3.1 Model Definition 

Consider a single server queue whose arrival process is given by a BMAP defined by the sequence 

{D to k ~ O}. Let the service times have an arbitrary distribution function, H, with Laplace-Stieltjes 

transform (LSI), H, and finite mean Ill' We also make the standard independence assumptions and 

"-
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assume that the traffic intensity, p = l1i Ai < 1. 

The Embedded Markov Renewal Process at Departures 

The embedded Markov renewal process at departure epochs is defined as follows. Define 't k to be the 

epoch of the k-th departure from the queue, with 'to = 0, and (~ko h) to be the number in system and 

the phase of the arrival process at'tk. Then (~b h, 'tk+l -'tk) is a semi-Markov process on the state 

space { (i,j): i ~O, I ::;'j::;'m }. The semi-Markov process is positive recurrent when the traffic intensity 

p = l1i Ai < 1. The transition probability matrix is given by 

- - -
Bo(x) Bl(x) B 2(x) 

- - -
Ao(x) Al(x) A 2 (x) 

- -
P(X) o Ao(x) Al(X) x~O, (10) 

o 0 Ao(x) 

- -
where for n ~O, An (x) and B n (x) are the mxm matrices of mass functions defined by 

[An (x)] ij = P { Given a departure at time 0, which left at least one customer in the system and the 

arrival process in phase i, the next departure occurs no later than time x with the arrival 

process in phase j, and during that service there were n arrivals}, 

[Bn(x)]ij = P{ Given a departure at time 0, which left the system empty and the arrival process in 

phase i, the next departure occurs no later than time x with the arrival process in phase 

j, leaving n customers in the system}. 

Queues with embedded Markov renewal processes whose transition probability matrix has the structure of 

(10) are referred to as queues of the "MIG/I type" or queues of the "MIG/I paradigm"[20]. The 

nomenclature arises due to the similarity of (10) to its scalar analogue in the ordinary MIGII queue. 

From the definition of P(n,t), it is clear that 

x 

An(x) = J P(n,t)dH(t). 
o 

(11) 
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We define the transform matrices 

~ ~ 

An{s) = f e- SX dAn (x), Bn{s) = f e-SXdBn{x) , 
0 0 

~ ~ 

A{z,s) = L An(s)zn, B{z,s) = LBn{s)zn, 
n=O n=O 

and for later use, the matrices 

A = A(1,O), B = B{I,O). 

Using the properties of P{n,t), it can be shown that 

~ 

A{z,s) = f e-SXeD(Z)xdH{x). 
o 

From (13), we see that 

~ 

A = feDtdH{t). 
o 

(12) 

(13) 

(14) 

We note that the matrix A is stochastic, and that the stationary vector 1t defined in (4) also satisfies 

1tA = 1t, 1te = 1. The vector II, whose j-th component is the conditional number of arrivals during a 

service which starts with the arrival process in phase j is defined by 

d II = dz A{z,O) e, 

z=l 

and is given explicitly as 
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(15) 

For all queues of the MIGII paradigm, the traffic intensity, p, is given by p=n:1l (see, e.g., [27]) which 

by (15) is seen to be p = !LilAi, as expected. 

Finally, using arguments analogous to those in [7], we obtain the following expression for the matrix 

B(z,s), 

B(z,s) = Z-I [sl-Dor l [D(z)-Do]A(z,s), (16) 

which implies that B = (I-Do I D)A. By expanding B(z,O) in a power series in z, we see that, for n ~O, 

the matrix B n is given by 

n 

Bn = -Dol ~Dk+IAn-k' 
k=O 

(17) 

We note that Do is a stable matrix, so that -Dol is nonnegative. Also, the (i,j)-entry of the matrix 

- Do I D k is the conditional probability that an idle period ends with the arrival of a batch of size k and the 

arrival phase j, given that the idle period began with the arrival phase i. Therefore, the above formula has 

an obvious probabilistic interpretation. 

3.2 The Stationary Queue Length at Departures 

The stationary vector of the Markov chain P = P( 00), embedded at departures from the queue, is the 

joint probability density of the stationary queue length and the phase of the arrival process. From (10), 

we have 

P= 

Bo BI B2 

Ao A I A2 

o Ao Al 

o 0 Ao 
(18) 

Writing the stationary probability vector x of P in the partitioned form x = (xo, XI,"')' where Xi, i ~O, 

are m-vectors, the system of equations, xP =x, can be expanded as 



- 11 -

;+1 

Xi = xoBj + L xv A i + 1- v, 
v=l 

for i ~O . 

Set X(z) = i: x j Zi Using the expressions for B(z) and equations (19). it follows that 
;=0 

X(z)[zI - A(z)] = xo[zB(z) - A(z)] = -xoD(i1 D(z)A(z), 

so that the generating function, X(z), is completely determined by the vector Xo. 

(19) 

(20) 

To motivate the discussion, we note that XOj' 15,j:'>m, is the stationary probability that a departure 

leaves the system empty with the arrival process in state j. Equivalently, it is the inverse of the expected 

number of transitions, between successive visits to the state (O,j), in the Markov chain embedded at 

departures. The latter quantity is derived from the first passage time distributions for successive returns to 

the set {(O, 1) , ... ,(O,m)}. If we define the level i to be the set of states {(i, 1) , ... ,(i,m)}, i ~O, then from 

the structure of the matrix P in (18) it is clear that, in order to reach level 0 from level i, i~l, each level 

in between must be visited, i.e., the process is skip-free to the left. Moreover, the chance mechanism 

governing the first passage from level i + 1 to level i is the same for all levels with i ~ 0, because of the 

spatial homogeneity of the Markov chain. Therefore, the first passage time distributions from level i + 1 to 

level i, i~O, playa crucial role in the study of the return time distributions of the level O. 

First Passage Times from Level i + 1 to Level i. 

Define G jj' [r) (k;x), k ~ 1, x ~ 0, as the probability that the first passage from the state (i + r, j) to the 

state (i,j'), i ~ 1, 1 :'> j, j' :'> m, r ~ 1, occurs in exactly k transitions and no later than time x, and 

that (i,j') is the first state visited in level i. G[r)(k;x) is the matrix with elements Gjj' [r)(k;x). 

By a first passage argument, it can be shown [27] that the joint transform matrix G(z,s), defined by 

= =f -[I] 
G(z,s) = L e-sxdG (k;x)Zk, for Izl:'>l, Re s ~O, 

k=IO 

satisfies the nonlinear matrix equation 

= 
G(z,s) = z L Av (s) G V (z,s). (21) 

v=o 
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In the context of the BMAPIG/I queue, G(z,s) governs the number served during, and the duration of, 

the busy period. It can be shown that the joint transform matrix governing the number served during and 

the duration of a busy period starting with r customers, is given by G r (z,s). Equation (21) is the key 

equation in the matrix analytic solution to queues of the MIG/I paradigm. It is the matrix analogue of 

Takacs' equation for the busy period in the ordinary MIG/I queue [28]. We also define the matrices 

~ 

G(z) = G(z,O) = z L Av GV(z), 
v=o 

~ 

G = G(l) = L AvGv. (22) 
v=Q 

The matrix G is stochastic when p ::; 1. For p < 1, the invariant probability vector g, of the positive 

stochastic matrix G, satisfies 

gG = g, ge = 1. (23) 

The vector Jl. is defined by 

d 
Jl. = dz G(z,O) e, 

z=l 

and its j-th component, 1 ::;j::; m, is the expected number of transitions (i.e., services) from a state (i + l,j) 
to level i. By differentiating in (21) we may derive the explicit expression 

Jl. = (I-G+eg)[l-A+(e-g)lJr1e. (24) 

The equality g Jl. = (1 - p) -I holds. 

Computation of the Vector x 0 

The quantity (XOj )-1 is, by a classical property of Markov chains, the mean recurrence time of the 

state (O,j) in the Markov chain P. If we now consider the chain P only at its visits to the level 0, and 

record the indices of the states visited as well as the number of transitions in P between consecutive visits 

to 0, we obtain an irreducible m-state Markov renewal process with transition matrix determined by the 
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matrix generating function K(z). The matrix K(z) is obtained as follows. Define the quantities 

K jj' (k;x), k;,: 1, x;':O, 15),/ 5,m, as the conditional probability that the Markov renewal process, starting 

in the state (0 ,j), returns to the set 0 for the first time in exactly k transitions and no later than time x, by 

hitting the state (O,j'). The joint transform matrix of K(k;x) = (Kjl' (k;x) j, is defined by 

K(z,s) = i: j e-SXdK(k;x)zk, for Izl 5, 1, Re(s) ;':0. 
k=!O 

A first passage argument shows that K(z,s) satisfies 

~ 

K(z,s) = Z L Bv(s)GV(z,s). 
v=o 

As before, we define the matrices 

~ 

K(z) = K(z,O) = z L Bv GV (z), 
v=Q 

~ 

K = K(l) = K(l,O) = L BvGv . 
v=o 

Using (16), it can be shown that 

K(z,s) = [sI-Dor! [D[G(z,s)]-DoJ. 

where 

so that 

~ 

D[G(z,s)] = LDjcJ(Z,s), 
j=O 

(25) 

(26) 

Remark: The matrix D[ G] has a simple interpretation. Consider the arrival process at a time epoch 
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during an idle period and let its phase at that time be i. During the next infinitesimal time interval, the 

arrival process may remain in the phase i or could change state to k without an arrival with probability 

(Do) ikdl, or a batch arrival of size I may occur and the phase may change to j with probability (D I )ijdl. 

That arriving batch initiates a busy period which ends in the phase k with conditional probability (G I) jk. 

If we "excise" the time interval corresponding to the busy period, we obtain an "instantaneous" 

transition from i to k, whose elementary probability is given by ( ~ ~ D I G1) ikdl. The matrix D[ G] may 
~I=l 

therefore be considered as the infinitesimal generator of a Markov process, obtained by excising the busy 

periods. 

By arguments classical in the theory of Markov renewal processes ([29], [30]) it can be shown [20] 

that x 0 can be expressed in terms of the invariant probability vector lC of K, which satisfies 

lCK = lC, lCe = 1, and the vectorlC* = K(l)(1)e, of the row-sum means of K(z). 

Specifically, we have 

Xo = lC 
lC lC* 

where lC * is obtained explicitly by differentiating in (25) as 

d 
lC* = dz K(z,O) e 

z=l 

Moments of the Queue Length at Departures 

Recall from (20) that 

X(z)[zl - A(z)] = -xODOI D(z)A(z). 

(27) 

(28) 

(29) 

Setting z = 1 in (29), adding X (1) en to both sides and observing that I - A + en is nonsingular, leads to 
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(30) 

The factorial moment vectors of the queue length at departures are given by the quantities x(n) (1) and 

can be computed recursively by differentiation in (29). We present below, the final expressions for the 

first two moments. See [20] for the derivations. 

Define U(z) = -xODOI D(z)A(z) and write the derivatives X(i) =X(i) (1), U(i)=U(i)(1) and 

A (i) =A (i) (1), for i ~ I, and let X =X(1). We then get 

and 

X(2) e = 1 {3X(l) A (2) e + XA (3) e + U(3) e 
3(1- p) 

(33) 

+ 3{U(2) + XA(2) - 2X(I)[I-A(l)]}U-A+e1t)-II3}. 

3.3 The Stationary Queue Length Distribution at Time t 

In this section, a relationship between the stationary queue length density at an arbitrary time t to the 

stationary queue length at departures is given. This is accomplished by a classical argument based on the 

Key Renewal Theorem for Markov renewal processes ([29],[30]), and the details of the proof can be 

found in [2] or [20]. 

Let ~(t) denote the queue length and J(t) be the phase of the arrival process at time t. We now 

consider the continuous parameter process ([ ~(t), J( t)], t~O}. The time-dependent joint distribution of 

the queue length and the arrival phase is given by the conditional probabilities 

Y(k,j;t) = P{~(t)=k,J(t)=j I ~o=ko,Jo=jo}, 
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for k ~ 0, 1 ::; j ::; m, r ~ 0. We can show that the limits 

Ykj = lim Y(k,j;r) , for k ~ 0, 1 ::; j ::; m, 
H~ 

exist and are simply related to the components of the invariant vector x. For k ~ ° let 

Yk = (Ykl,Yk2, ... ,Ykm). The vector Yo is given by 

0'-1 D-1 Yo = -II.I Xo 0 , 

and yoe = I-p, as expected. The generating function, Y(z) 

function X (z) by the equality 

Y(z) D(z) = 1..;-1 (z -1) X(z), 

Y(l) = Jt. 

(34) 

~ 

= L Y i Z i is related to the generating 
i=O 

for Izl<l, (35) 

By comparing the coefficients of z i in (35), we see that the vectors Y i are related to the vectors x i by: 

for i~O. (36) 

Moments of the Queue Length at an Arbitrary Time 

Expressions for the moments of the queue length at an arbitrary time can be obtained by 

differentiation in (37). We illustrate for the first two moments of the queue length, given by y(l)(1)e 

and y(2)(1)e, respectively. Writing the derivatives as y(i) = y(i)(1) and D(i)=D(i)(l), for i~l, we 

have 

(37) 

(38) 

(39) 
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Adding y(l) elt to both sides of (37) and observing that elt+ Dis nonsingular, we obtain 

Postmultiplying by e in (38) yields 

y(l) D(I) e = 1..1-1 X(l) e - .!. ltD (2) e 
2 . 

Postmultiplying (40) by D(l) e and substituting (41) leads to 

Similar manipulations lead to 

y(2) e = X(2) e - Al y(1) D(2) e - .!. A]ltD(3) e 
3 

where X(l), X(I), and X(2) e, are given by (30), (31) and (33), respectively. 

(40) 

(41) 

(42) 

(43) 

The generating function for the queue length at (batch) arrival epochs is given by 

1..]-1 Y(z) L 7=1 Dje = -1..1-1 Y(z)Doe, so that the calculation of moments for that distribution is again 

routine. 

3.4 The Virtual Waiting Time Distribution 

In this section, we state results for the virtual waiting time distribution. First, we define the following 

quantities 

W(x) 
- - -= (W 1 (x), ... , W m (x) }, where Wj (x) is the joint probability that at an arbitrary time the 

arrival process is in phase j and that a vinual customer who arrives at that time waits at 

most a time x before entering service, 
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w,(x) = W(x)e. the virtual waiting time distribution. 

Also for use in what follows. we will need the Laplace-Stieltjes transforms 

~ 

W,(s) = J e-SXdW(x), 
o 

w,(s) = W,(s)e. 

Ramaswami [2]. has shown that the Laplace-Stieltjes transform W, (s) satisfies 

W(O) = 7t. 

from which it follows that 

(44) 

(45) 

Remark: Although the analytic derivation of (44) is somewhat involved (based again on the Key 

Renewal Theorem for Markov renewal processes) the final results. (44) and (45). are quite elegant. Note 

that they are a direct generalization of the classical Pollaczek-Khinchin formula for the waiting time in the 

MIGII queue. In particular. if DO=-A and D j =A then the BMAP is a Poisson process of rate A. 

Yo = 1- p. and (45) reduces to the familiar form. 

s(1- p) 
w, (s) = -"':'-'--:-~

S-A+AH(s) . 

Moments ofthe Virtual Waiting Time Distribution 

We now derive expressions for the first two moments of the virtual waiting time distribution. These 

expressions are in a simpler form than those in [2] and although they appear quite complicated they are 

easily implemented for numerical computation. We begin with Equation (44) written as 

sw(s) + w(s)D(H(s)) = syo. (46) 

To simplify the notation and to aid in the numerical implementation of the formulas. we define 
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V(s)=D(H(s)), and write w(i) = w(i)(O), V(i) = V(i)(O) for i<:l, and let~; be the i-th moment of 

H(·) (if it exists). Then by successively differentiating Yes) we get 

We note that ltD(!) e = AI-I. We also define vi = V(i) e. Now, by successively differentiating in (46) 

we obtain, after some laborious algebra, 

(47) 

(48) 

The first two moments of the virtual waiting time are thus given by (47) and (48), respectively. For 

example, we see that for the M X /G/I queue with arrival rate A and batch size generating function p(z), 

D(z) =- 1..+ Ap(z) so that (47) reduces to 

E(W) = 
A.[(~J)2p(2)(1) + ~2p(l)(1)1 

2(1-p) 

We also note that the moments of the waiting time seen by an arrival may be obtained in terms of the 

vectors wen). For example, the mean waiting time of the first customer in a batch at an arrival epoch is 

- (ltd) -1 w (1) d, etc. For single arrivals this is the actual waiting time. The actual waiting time for an 

arbitrary customer with batch arrivals is more complicated and will be reported elsewhere. 
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3.5 The Classical Algorithm 

The outline of the analysis in the previous sections also serves as a recipe for the implementation of a 

computational algorithm. Indeed, one of the major benefits of the matrix-analytic approach to the 

solution of stochastic models is that intermediate quantities which arise in the analytic derivation are also 

needed in the numerical procedure and, due to the fact that they are derived using probabilistic arguments, 

they are already in a form which is suitable for numerical evaluation. That is, they often involve 

arithmetic operations on only nonnegative quantities, thus avoiding common sources of round-off error. 

Moreover, many times the obvious procedures for solving the required nonlinear matrix equations can be 

shown to produce monotonically increasing estimates of the unique solution so that the algorithms 

themselves are inherently stable. Such is the case for the current model, as it was developed in [2] and 

summarized more recently in [20]. One practical problem with the approaches there (besides the more 

complicated notation) is that the algorithms, in their complete generality, require formidable resources in 

both CPU time as well as storage. To give some indication of the computational complexities we briefly 

outline the general numerical procedure. Since this description is not meant to be implemented as a 

specific algorithm, it will be informal. 

We first assume that the service time distribution, H( . ), and the sequence {D j: j <: O} which specifies 

the arrival process, are given. Some quantities such as 

D(l)(1) = 'f,jDj' 
j=1 

may be explicitly available depending on the formulation of the problem. If they are not, then they must 

be numerically computed. We assume that all such setup computations have been completed. 

Step 1: Computation of the matrices A n. For a general service time distribution, H(·), the matrices An 

defined in (II) need to be numerically integrated. This is quite delicate since the matrices P(n,t), 

n <: 0, t <: 0, are themselves computed by numerically integrating the infinite system of differential

difference equations (6). Neuts discusses in [23] a procedure which adaptively truncates (6) at both upper 

and lower indices as t increases. Since the An's are the starting point for a long series of numerical 

computations, they need to be computed to a high degree of accuracy and it is clear that the more 

accuracy required for the matrices An' the finer the mesh is required for solving the differential equations. 

Also, for each n, the matrix An requires m 2 numerical integrations. Once the sequence {An: O::;n ::;M}, 

for a suitably chosen truncation index M, is computed, these matrices need to be stored. Guidelines for 

choosing the truncation index, M, are given in [23]. Now the matrix A, defined in (14), is computed by 

summation of the sequence {An}. This can be compared with a direct numerical integration in (14) as a 

check on the accuracy of computations so far. The sequence {An} can also be normalized in an 
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appropriate way to ensure that its sum is stochastic. 

Step 2: Computation of the matrix G. The obvious numerical procedure for computing the matrix G is by 

successive substitution in Equation (22), starting with G = O. It has been shown that this produces a 

sequence of nonnegative matrices which increases monotonically to the unique solution of (22). As the 

traffic intensity, p, gets moderate to large, however, the convergence gets slower. A slightly faster 

convergence can be obtained in the following modification, 

Gk+ 1 = i: (I-AJl-1An(Gk)n, 
n=O 
",'I 

starting with Go = O. It was pointed out in [20] that the speed of convergence can be enhanced even 

further in some cases by starting the iteration with a stochastic matrix. The estimating sequence no longer 

possesses the monotonicity property but each iterate is itself stochastic and we have had satisfactory 

experience with this approach. In either case, the above (truncated) sum is computed by Homer's method. 

Applying the matrix version of Newton's method, (see, e.g., [31]), to (22) results in many fewer 

iterations being required but a large system of linear equations needs to be solved at each iteration. This 

is discussed in [32] where an acceleration method based on a first order approximation to Newton's 

method is proposed. Experience with this approach has shown that in some cases the CPU requirement 

may be reduced by 50-70 percent. 

Once G is computed to the desired accuracy, the stationary probability vector, g, is computed by 

standard methods. 

Step 3: Computation of the vector fl. The vector fI, defined in (15) is evaluated in the obvious manner. 

Step 4: Computation of the vector IL. The system of linear eqnations 

[I-A+(e-g)!l]u = e, 

is solved for u. Then IL = (I-G+eg)u, as seen from (24). At this point, the identity gIL = (l_p)-l, 

is verified with the computed estimates of g and IL. This serves as a powerful accuracy check on the 

numerical computations so far. Such accuracy checks are useful by-products of the matrix-analytic 

approach. 

Step 5: Computation of the matrix D[ G]. The matrix 
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~ 

D[G] = I:, D j cY, 
j=O 

Step 6: Computation of K and 1C. The matrix K, given by (26), is computed directly. Its stationary 

probability vector, 1C, is then computed by standard methods. 

Step 7: The vector Xo. The vector K* is computed from (28) using the vector u from Step 4. Xo is now 

obtained from (27). 

Step 8: Moments of the queue length at departures. The first two moments of the queue length 

distribution at departures, X(l) (1) e, and X(2) (I) e, are given explicitly in tenns of Xo by Equations (32) 

and (33), respectively. 

Step 9: The vector Yo. Once the vector Xo is obtained, Yo is computed by (34). 

Step 10: Moments of the queue length at an arbitrary time. y(l)(l)e and y(2)(l)e are computed from 

(42) and (43), respectively. 

Step 11: Moments of the virtual waiting time distribution. The first two moments of the virtual waiting 

time are given explicitly in tenns of Yo by (47) and (48), respectively. 

Step 12: The distributions of the queue length at departures. Equation (19) can be solved for x j + 1 to get 

a recursion for Xj+l in tenns of Xj, O-o):5,i. Unfortunately, this recursion suffers from "catastrophic 

cancellation"[33] which results from subtracting small quantities of the same order. An alternative for 

solving (19) is to rewrite it in a fonn which is directly suitable for a block Gauss-Seidel iterative 

procedure (see e.g., [6] and [20]). Although this method was implemented in [6] and it was seen to be a 

numerically stable algorithm, the Gauss-Seidel procedure suffers from slow convergence, especially for 

high traffic intensities. The following procedure, obtained in [34], constitutes a major breakthrough in the 

efficient computation of the sequence {x k }. It is the natural extension to the matrix case of a simple 

device, due to P. J. Burke, to avoid loss of significance in similar computations for the MIGII queue. 

Given the vector xo, the vectors Xj, for i~I, are recursively obtained from the fonnula 

(49) 

where 
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B·G i - V 
I , and Av = L AiGi- V

, v 2: O. 
i=v i=v 

Note that all quantities in this recursion are nonnegative, thus avoiding the catastrophic cancellation 

suffered by other recursions. Further, as observed in [34], the implementation of (49) can be done 

efficiently by noting that as i~oo, B i, Ai-tO. One may therefore choose a large index i, (e.g., i can be 

~hosen so that L;=i+l Bke and L;=i+l Ake have negligibly small components), and set Bi and 

Ai = O. The other required matrices are computed by implementing the backward recursions 

Note that the matrices A h and B k, k 2: 0, still need to be computed. 

Step 13: The distributions of the queue length at an arbitrary time. The sequence, {y k> k 2: I }, is 

computed recursively from (36) in tenns of the sequence {x k}. 

Step 14: The distribution of the vinual waiting time. There are several methods for computing the 

distribution of the virtual waiting time distribution. The first is by numerical inversion of the Laplace

Stieltjes transfonn as given by (45). The method presented in [35] has been used successfully for 

inverting similar transfonns. Another useful transfonn inversion technique is given in [36]. An 

alternative method is to convert (44) into the equivalent Volterra integral equation 

x 

W(x) = W(O) + f W(u)0(x-u)du, x 2:0, 
0 

where 

El(x) = - }:,DJP\x), 
k=O 

(see, e.g., [37] and [20].) There are standard methods for the numerical solution of Volterra-type 

equations, see, e.g., [38] and [39]. 

The above algorithm has been implemented successfully for several special cases of the BMAPIG/I 

queue [6]. It is clear that implementation of the algorithm in its full generality is a major task. Also, if 

accomplished, it would present a major burden on both CPU resources and memory requirements. In the 

next section, we present some new results which will eliminate the need for most of the computations and 
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storage requirements in the above algorithm. 

4. NEW RESULTS FOR THE BMAPIG/I QUEUE AND THEIR IMPLICATIONS 

A recent result of Sengupta [40] shows that the solution of the nonlinear matrix equation arising in the 

GIIPHII queue has a matrix exponential form. It was immediately apparent that the solution to the 

corresponding equation, (22), for the PHIG/I queue also had a matrix exponential form. This was 

proved, using a probabilistic argument, for the MMPPIG/I queue by Neuts [16] and was extended to the 

MAPIG/l queue in [7]. The result for the PHIG/I queue was proved in [41] by using a duality result 

between the GIIPHII and PHIG/l queues. This exponential representation leads to several explicit 

formulae which reduce substantially the computations involved in the algorithmic solutions of these 

models. We now extend this result to the BMAPIG/I queue and discuss the specific simplifications that 

occur in the algorithm. 

4.1 The Matrix G(z,s) 

By adapting methodology developed in [40], we generalize the proof given in [16], for the 

MMPPIG/I queue, to prove the following key result for the BMAPIG/I queue. 

Theorem: For the BMAPIG/I queue, the matrix G(z,s), satisfying (21), also satisfies the equation 

which readily implies that 

~ 

G(z,s) = zJ e-SXeD[G(z.s))xdH(x) , 
o 

~ 

G = J eD[G)xdH(x). 
o 

(50) 

(51) 

Remark: Since D[G] is the infinitesimal generator of an irreducible Markov process, exp(D[G]x) is 

strictly positive for x > 0, and (51) implies that G is strictly positive. 

Proof: As in [16], we consider the continuous parameter process ((J(t),R(t)) , t?Oj, where J(t) is the 

phase of the arrival process and R(t) is the residual busy period at time t (or equivalently, the virtual 

waiting time or amount of work in the system at time t). When, at time t, the queue is empty, we set 

R(t)=O. Next, we introduce the conditional probability 'l'ij(x;k,y) that, given J(O)=i, 1 S;i S;m, and 
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R(O) =x, x >0, the (current) busy period ends before time y, y 2: x, with the arrival process in phasej and 

involves a service of k, k2:0, new customers. The mxm matrix 'P(x;k,y) has elements 'Pij(x;k,y) and 

we define the transform 'P * (x; z, s) by 

'P*(x;z,s) = i: j e-Y'dy'P(x;k,y)zk. 
k=Ox 

It was shown in [16] that 

for Xl >0, X2 >0, (52) 

and by continuity, we set 'P *(O;z,s) = I. 

The busy period starting with n customers is governed by the matrix G n (z,s). By conditioning on the 

total service time of those first n customers, we have 

~J -(n) 
Gn(z,s) = zn 'P*(y;z,s)dH (y), (53) 

o 

- (n) -
where H (.) denotes the n-fold convolution of H(·). We also have 

'P(x;O,y) = e , y_x, 
{ 

Dox > 

0, O$y <x, 

and fork 2: I, 

k x

J 
YJ-X D U . - (j) 

'P(x;k,y) = L du e 0 Dj'P(x-u+v;k-J,y-u)dH (v). 
j=l 0 0 

(u) (v) 

Taking transforms leads to 
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tTl -(sl-DO)x 
T *(X;Z,S) = e + 

x 0:> y-x 

f du f e-SY f D x ~ . - (j) 
e 0 I,Djz)'¥(x-U+V;z,y-u)dH (V) 

o x o j= I 
(U) (y) (V) 

x ~ ~ 

-(sl-Do)x = e + f dw f f e-S(U-W+X)eDo(X-W) iDjzj'¥(w+v;z,u)dii(j)(v) 
o 0 W+v j= I 

(W) (V) (u) 

x 
-(sl-Do)x 

=e + f e-(SI-Do)(x-w) iDjGi(Z,s)'¥*(w;Z,s)dw 
o j=l 

Premultiplying both sides of the above equation by e (sI-Do)X, and differentiating with respect to x leads to 

d 
dx '¥*(x;z,s) = -(s/-D[G(z,s)])'¥*(x;z,s), 

with the initial condition '¥ *(O;z,s) =1, which implies 

'¥*(x;z,s) = e-(sI-D[G(z,s)]}x 

which proves the theorem .• 

Corollary: 

1. The matrix G commutes with the matrix D [G]. 

2. The vector g, defined in (23), is also the stationary probability vector of the infinitesimal generator 

D[G]. 

3. The vector - gDo is a left eigenvector ofthe matrix K defined in (26). 

4. The vectors xo and Yo are given explicitly in terms of gas 

xo = I..j(l-p)g(-Do), (54) 

Yo = (l-p)g. (55) 
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5. The Laplace-Stieltjes transform, W v (s), satisfies 

Wv(S) = s(1-p)g[s!+D(H(s))]-1 (56) 

from which it follows that 

Wv(S) = s(1-p)g[s!+D(H(s))]-l e . (57) 

Proof: From the representation of Gin (51), it is clear that it commutes with D[G]. For the second part 

of the corollary, let w be a stationary vector of the infinitesimal generator D[G]. That is, w satisfies 

wD[G] = 0, we = I. From (51), it is clear that, w is a stationary vector of G. The result follows 

from the uniqueness of g. That - gDo is a left eigenvector of K is seen from the expression for K given in 

(26). Therefore, (27) implies that xo=-cgDo for some constant c. Equation (34) then yields that 

Yo =CA.;-1 g and since yoe ':' 1- p, we have c = A.; (1- p). This proves parts 3 and 4. Part 5 is obtained 

by substitution into (44) and (45) .• 

5. A NEW ALGORITHM FOR THE BMAP/G/l QUEUE 

A major consequence of the preceding results is the explicit formulas for Xo and Yo in terms of the 

vector g. In particular, once g is computed the moments of the queue length and virtual waiting time 

distributions can be immediately computed from Equations (31-33), (42-43), and (47-48). Thus, many of 

the intermediate steps in the classical algorithm are avoided. 

A further consequence of (51) is an efficient algorithm for computing the matrix G. The basic idea is 

to use the concept of uniformization. Basically, this says that if Q is the infinitesimal generator of a 

continuous time Markov process, then 

= ~ e-et (at)" L" 
"'" I' n=O n. 

(58) 

where a = max ( - Q ii ), and L =! + a -1 Q is a stochastic matrix. If we have a Poisson process of rate a and 
i 

at each Poisson epoch we make a transition in the discrete time Markov chain with transition probability 

matrix L, then this process is equivalent to the original Markov process with generator Q. The Poisson 

process with rate a is called the uniJormizing Poisson process for the Markov process with generator Q. 
































